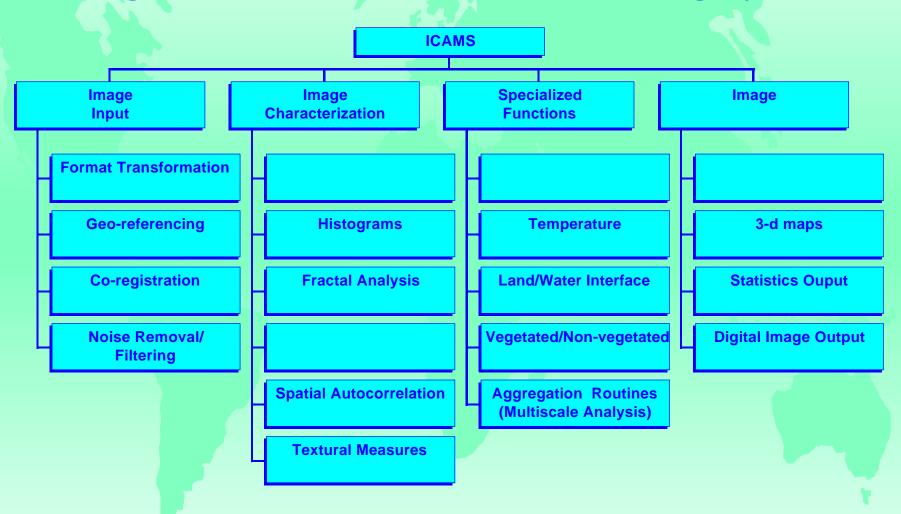
A Geographic Information System for the Characterization and Modeling of Multiscale Remote-Sensing Data Using Fractals and Spatial Techniques

Nina Lam

Department of Geography & Anthropology Louisiana State University Email: ganlam@lsuvm.sncc.lsu.edu

◆ Dale Quattrochi

NASA-Global Hydrology & Climate Center Email: dale.quattrochi@msfc.nasa.gov


Hong-lie Qiu

Remote Sensing & Image Processing Laboratory Louisiana State University Email: qiu@rsip.lsu.edu

Objectives

- ◆ To develop a user-friendly geographic information system software package called ICAMS for the characterization and analysis of multiscale remote-sensing data for global change and environmental modeling studies.
- **◆ ICAMS stands for Image Characterization And Modeling System.**
- Main techniques include: fractals, boundary delineation, spatial statistics, aggregation and scale analysis.
- **♦** Year One focuses on the design and implementation of ICAMS.
- ◆ Year Two evaluates the reliability and effectiveness of the various algorithms in characterizing remote-sensing images at different scales, utilizing ICAMS developed in Year One.

Image Characterization And Modeling System

Technical Approach Task 1: Software Development

- Provide specialized functions that are not available in any existing GIS/RS software, such as fractal analysis, variogram analysis, and multiscale analysis.
- ◆ Build upon existing commercial GIS software, including Arc/Info (Live Link with Erdas Imagine), Intergraph.

Rationale: Minimize duplication Large user community

◆ Software evaluation: use a standard data set to test all modules.

Technical Approach Task 2: Evaluation of the fractal algorithms and other spatial techniques

 Benchmark study on how the fractal dimensions differ using different fractal measuring algorithms, using:

> A standard data set; theoretical surfaces (white-noise); simulated autocorrelated surfaces.

- **♦** How the fractal dimensions are affected by differing pixel resolutions, spectrum ranges, and sensors.
- **♦** How the fractal results differ from those of the spatial techniques.

Technical Approach Task 3: Analysis of Multiscale data

◆ Select study sites that have:

multiscale remote-sensing data (Landsat-TM,

MSS, and AVHRR);

different landscape types;
sufficient ancillary data.

◆ Apply the functions in ICAMS, compute indices, and evaluate the changes in indices due to scale changes.

Current Status Task 1: Software Development

- Major functions completed on Arc/Info SUN platform.
- Major functions completed on Intergraph MGE platform.

In progress

- **◆ Transferring to Intergraph Windows-NT**
- **◆ Transferring to PC Arc/View**
- **◆** Transferring to PC standalone
- Refining existing functions
- **♦** Adding other options to some of the modules

Current Status Tasks 2&3: Evaluation of Fractal Algorithms and Multiscale Analysis

A pilot study

- ◆ Use a Landsat-TM image of Lake Charles, LA.
- **◆** Create a subset with 201x201 pixels.
- **◆** Compare the fractal dimensions using the isarithm and the variogram methods.
- **◆** Resample the original image using a 2x2 window.
- **◆** Compare the descriptive statistics and the fractal dimension values.
- **♦** See Tables 1, 2, and 3.

Results / Lessons Learned

- ◆ Discrepancies in results from the two fractal methods exist.
- **◆ Each** method has its own set of parameter input values that will affect the final D.
- ◆ Variogram method generally overestimates D; but the range of points defining D reflect the spatial characteristic of the image well.
- **◆** Isarithm method generally is more stable.
- ◆ Resampling method may be the key in affecting the performance of scale analysis.
- ◆ The resampled image generally has lower standard deviations but higher fractal dimensions.

Next Steps

- **◆ Complete the Window-NT version.**
- **♦** Complete the PC standalone version.
- **♦ Refine ICAMS.**
- **◆** The pilot study leads to concrete suggestions to improvement of existing fractal method.
- **◆** Perform evaluation using theoretical surfaces.
- **◆ Identify three study sites for detailed evaluation:**
 - Nevada (dry natural landscape);
 - Huntsville (urban, vegetated);
 - Coastal Louisiana (coastal).

Table 1
Summary statistics of the original (201x201) and the resampled (101x101) images

Original image

Resampled image

Band	Min	Max	Mean	S.D.	Min	Max	Mean S.D.
1	40	255	70.37	12.95	54.50	170.75	70.39 11.51
2	13-	126	27.40	7.57	17.50	83.50	27.41 6.76
3	8	158	30.95	11.20	15.25	108.50	30.97 10.10
4	4	138	45.98	11.82	6.25	89.00	45.95 10.61
5	0	232	52.07	17.28	2,25	147.50	52.07 16.06
6	116	146	132.37	3.61	116.25	145.50	132.37 3.57
7	0	148	22.37	9.96	0.25	82.00	22.38 9.25

Table 2
Fractal dimension and r² values (in parentheses)
computed for the original and the resampled image
using the isarithm method *

Band	Original Image	Resampled Image
	2.77(0.86)	2.90(0.97)
2	2.84(0.92)	2.92(0.98)
3	2.85(0.92)	2.89(0.99)
4	2.67(0.93)	2.76(0.97)
5	2.68(0.98)	2.72(0.94)
6	2.39(0.93)	2.56(0.96)
7	2.89(0.98)	2.89(0.96)

^{*} Parameter inputs are: isarithmic interval = 10;

number of walks = 6;

direction = both row and column

Table 3
Fractal dimension and r² values (in parentheses)
computed for the original and the resampled image
using the variogram method *

Band	Original Image	Resampled Image
1		
2		
4	2.84(0.63)[49]	2.86(0.66)[46]
5		
6		
7		

^{*} Breakpoints were selected to maximize the distance range and that the r² exceeds 0.60. The numbers in brackets indicate the last distance point included in the regression. For example, the range of points included in Band 1 of the original image is from Point 1 to Point 27. There are totally 50 distance groups (points).

Some Questions that we will address with ICAMS

- ◆ Do different environmental processes (e.g., coastlines, vegetation boundaries) have their own fractal dimensions?
- ♦ How is the fractal dimension of an image affected by the resolution of the sensor?
- ♦ How does the fractal dimension compare with the more conventional spatial techniques in the effectiveness in characterizing image and multiscale image data?
- ◆ Can we identify areas with different properties (e.g., vegetation v.s. bare ground) by measuring the corresponding fractal dimensions?
- **◆** What is the significance of *changes* in fractal dimension, either in time or space?
- ♦ How can we use fractal analysis to identify specific patterns of land cover, terrain, and so forth?
- ♦ How will the land/water or vegetated/non-vegetated boundaries, the NDVI, and the temperature change with scale?